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We consider a general model of branch competition that automatically leads to
a critical branching configuration. This model is inspired by the 4−g expansion
of the dielectric breakdown model, but the mechanism of arriving at the critical
point may be of relevance to other branching systems as well, such as fractures.
The exact solution of this model clarifies the direct renormalization procedure
used for the dielectric breakdown model, and demonstrates nonperturbatively
the existence of additional irrelevant operators with complex scaling dimensions
leading to discrete scale invariance. The anomalous exponents are shown to
depend upon the details of branch interaction; we contrast with the branched
growth model in which these exponents are universal to lowest order in 1− n,
and show that the branched growth model includes an inherent branch interac-
tion different from that found in the dielectric breakdown model. We consider
stationary and non-stationary regimes, corresponding to different growth
geometries in the dielectric-breakdown model.
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Diffusion-limited aggregation (1) produces complicated fractal structures by
branch competition. In this model, in radial geometry, a single seed particle
is placed in a two-dimensional plane. A random walker is released from
infinity, and allowed to walk until it hits the seed, at which point it sticks.
Further walkers are released sequentially, with each walker only released
after the previous walker has joined the growing cluster. The result of
this process is a growing, branching cluster, that models a wide range of
physical processes, including viscous fingering, (2) electrodeposition, (3) and
dendritic growth. (4)



An interesting extension of diffusion-limited aggregation is the dielec-
tric breakdown model. (5) In this model, a Laplacian field, f, is defined
surrounding the growing cluster, and the probability of adding a particle to
any point on the cluster is taken to be the normal derivative of f, raised to
the power g. It may be shown using Green’s functions that for g=1, the
process is equivalent to the diffusion-limited aggregation process. For
g > 1, the probability of growth at the tips of the cluster is enhanced com-
pared to that in diffusion-limited aggregation, and the fractal dimension
decreased below the diffusion-limited aggregation value of % 1.7.
Recently, a controlled renormalization group was developed within a

4−g expansion for the dielectric breakdown model. (6) This expansion is
based on considering an aggregate as a collection of strictly one-dimen-
sional branches; at g=4, the aggregate consists of a single branch. It was
shown that the probability of a single branch pair surviving for time t is
proportional to 1/tn (to use the terminology of the branched growth
model (7)), with 1− n=(4−g)/2. As a result, for g > 4, the probability of a
branch pair surviving for time t decays faster than 1/t, and large branch
pairs are not produced. For g < 4, large branch pairs are produced. This
was used to develop a direct renormalization group in an expansion in
1− n=(4−g)/2, quantifying the mechanism of branch competition as a
means of generating scale invariant clusters. It was found that, without fine
tuning, the system arrives at a critical point characterized by a scale-
invariant tip-splitting rate so that the renormalized probability of a branch
surviving for a time t becomes proportional to 1/t and the rate of branch
production and branch death balance at all scales. However, branching
structures are common in other physical systems, and a similar 1/t survival
probability has been found in fracture systems. (8)

Thus, we will consider a more general model of branch competition,
inspired by the 4−g renormalization group, arguing that 1−n is a general
expansion parameter for a wide class of branching processes. As this model is
based solely on the topology of the branching process, rather than any speci-
fic geometrical properties, it may be relevant to a much wider range of
branching processes than simply fractal growth. This model will be exactly
solvable, clarifying the direct renormalization procedure employed for the
dielectric breakdown model. We will find that the exponents depend on both
n and on the details of branch interaction, becoming trivial as the nQ 1. The
exact solution of the general model reveals the presence of additional, irrele-
vant operators with complex scaling dimension, indicating the presence of
discrete scale invariance, which has been argued to exist in diffusion-limited
aggregation.(10) These operators are beyond the reach of perturbation theory.
We also compare to another model of branch competition, the branched

growth model. (7) Recently, (9) it was shown that within the branched growth
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model the fractal dimension depends only on n for small 1− n; here, this
is shown not to be true for general models of branch interaction, though
the fact that the numerical values of the exponents within the 4−g (6)

and branched growth (9) expansions are similar is an indication that the
branched growth model is a useful approximation. However, we show that
the physics of the branched growth model involves certain assumptions
which do not hold for the dielectric breakdown model, so that the
branched growth model result is not exact for the dielectric breakdown
model.
In addition to the radial geometry discussed above, diffusion-limited

aggregation has also been considered in a cylindrical geometry. In this case,
growth occurs on a cylinder, with the seed taken to be a straight line at the
bottom of the cylinder, and particles released from above. There have been
persistent questions about possible differences in fractal dimension between
these two regimes. While both growth processes are non-equilibrium, in the
cylindrical case, the cluster reaches a statistically stationary state, up to a
trivial vertical translation, while in the radial geometry the cluster grows
indefinitely.
We thus consider this model within two separate regimes. One regime

will be analogous to the steady state regime in the cylindrical geometry in
the dielectric breakdown model, while the other will be a non-stationary
state, which corresponds to an initial condition of a single infinitely long
vertical branch in cylindrical geometry, over time scales much shorter than
the time required for the aggregate to reach the scale of the cylinder. We
will find that the exponents characterizing local fractal dimension and mass-
radius scaling are the same. This indicates that the difference between these
dimensions observed in radial geometry, (11) as well as the non-trivial affine
exponents observed in the early stages of growth in cylindrical geometry (12)

from initial conditions consisting of a horizontal line, are due not just to
the non-stationary nature of the growth but also to the different geometry
and initial conditions. Another motivation to consider different geometries
is to compare the branched growth model computation, performed in a non-
stationary regime, to the 4−g RG computation, performed in a stationary
regime.

A Model of Branch Competition. The dynamical state of the
system at a given time t will be defined by a binary tree, with a set of times ti,
one for each branch point in the tree, defining the time at which that
branch pair was produced. The time t is taken to be a continuous variable.
For purposes of simulation later, it will be necessary to introduce an infinite-
simal time step dt. There are two dynamical processes, tip-splitting which
leads to the production of additional branches and branch competition.

Scale-Invariant Branch Distribution 1033



Fig. 1. Creation of a new branch point.

The first process is accounted for by assigning a rate g at which each tip (or
leaf of the tree) splits, changing the topology of the tree by adding an addi-
tional branch point at that tip with time ti=t. The probability of this process
occurring on a given branch in a time step dt is g dt. See Fig. 1. At the
moment of branch creation, one of the two daughter branches is randomly
designated as the weaker branch, and the other as the stronger (this distinc-
tion will determine which branch survives in the competition process below).
The second process is accounted for by assigning a probability per unit

time of a branch point i being removed from the tree due to competition of
branches. When the branch point is removed, the weaker branch is
removed from the tree. See Fig. 2. We pick the probability of removing
branch point i in a time step dt to be

nh(t− ti−tmin)
1
t− ti

dt (1)

plus additional corrections due to branch interaction. Without these addi-
tional corrections, the above equation gives a probability of a weaker
branch surviving (not being removed) for a time t which is proportional to
(t/tmin)−n. The h-function in Eq. (1) plays the role of a short-time cutoff in
the theory, setting the the shortest time tmin for which a branch may
survive. Throughout we will pick

tmin=1 (2)

Other choices for tmin do not affect the universal results.

Fig. 2. Removal of the branch at the circled branch point.
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To include the effects of branch interaction, we pick a phenome-
nological model for the interaction. We pick a scale factor x < 1, and
declare that if on the weaker branch there exists another branch point with
branching time exactly equal to t−x(t−ti) then the weaker branch will be
removed. In this case, the lower branch point will have lived for a time
shorter by a factor x than the branch point i.
This model has the essential features of the 4−g renormalization

group. One difference is that within that procedure the details of branch
competition had to be determined numerically by integrating the trajec-
tories of several competing branches, where here they may be determined
phenomenologically by the scale factor x. Another difference has to do
with the time scale. Within the dielectric breakdown model, each tip has a
given growth measure and the tip-splitting rate and probability of remov-
ing branch points are proportional to the growth measure at the tip nor-
malized by the total growth measure for the cluster. Here, we instead take
all tips to have the same growth measure (so that all tips have the same
probability of splitting) and we do not normalize the tip-splitting rate. The
lack of normalization simply changes the overall time scale; the choice of
the same growth measure for all tips is simply taken to make the model
more tractable analytically and does not alter the essential physics.
In addition, in the 4−g renormalization group, branch points may

also be removed as a result of interactions with parent branches of similar
scale, rather than just as a result of daughter branches. We will consider
this possibility later.

Survival Probability. Let a branch pair be created at time t=0.
Define s(t) to be the probability that the branch pair survives until time t,
assuming that the branch pair is not destroyed by removal of one of its
parents. We find

“ts(t)=−
nh(t−1) s(t)

t
−(1−x) gs(t) s(xt) (3)

Here, the first term is the change in survival probability due to the removal
process in Eq. (1). The second is the change in survival probability due
to branch competition, as (1−x) gs(xt) dt is the probability of creating
another branch point at time (1−x) t which survives until time t, causing
the removal of its parent. The growth rules have been chosen so that
Eq. (3) is exact; the process of creating and then removing a branch point
does not affect the distribution of branches on the remaining stronger
branch of that branch point.
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The quantity tgs(t) plays an important role. As g is the rate at which
branches are created, and s(t) is the survival probability of a branch, this is
the probability, in time t, of creating a branch that survives for time t. This
is the quantity that we will find reaches a fixed point, indicating a scaling
invariant cluster. We define tgs(t) — g̃(t), so that g̃(t) may be viewed as
defining a tip-splitting rate at a time scale t.
Searching for a fixed point of Eq. (3), suppose g̃(t)=A. We find

A=x(1− n)/(1−x). The constant A sets the the dimensionless (scale
invariant) tip-splitting rate. (6) As nQ 1, AQ 0. The probability of a branch
being removed at exactly time t is −“ts(t)3 t−2.
This result can also be obtained by a direct renormalization proce-

dure (6) in which one expands the survival probability in powers of 1− n
and g. Solving Eq. (3) to zeroth order in g and first order in (1− n),
g̃(t)=A+A(1− n) log t+O(1− n)2. Then, solving Eq. (3) to first order in g
we find g̃(t)=A+A(1− n) log t−A2(1−x) log t/(xt), so that a fixed point
of g̃(t) is reached only for the given value of A at which the logarithms on
the right-hand side cancel. For the present model, the solution can be
obtained exactly without the direct renormalization; we mention the direct
renormalization, however, because for the dielectric breakdown model the
direct renormalization procedure is required.
To investigate the approach to the fixed point, suppose instead

g̃(t)=A(1+f(t)). Linearizing Eq. (3) about f=0, we find

“f(t)
“ log t

=−(1− n) f(xt) (4)

Equation (4) is translationally invariant in y=log t, and has solutions
f=eky, where the eigenvalue k is the scaling dimension. We find

k=−(1− n) xk (5)

When n % 1, the eigenvalue with largest real part is k=−(1− n)+
O(1− n)2. For n % 1, this eigenvalue is small. In this case, we can consider
the approach to scaling beyond linearization about the fixed point. We can
make an approximation that f(xt)=f(t) and thus approximate the non-
linear problem by “ts(t)=−ns(t)/t−(1−x) gs2(t)/x, which can be solved
exactly for s(t), t > 1 as s(t)=(1− n)/((1−x) gt/x+ctn), where c is an
arbitrary constant.
For 1− n small, Eq. (5) has two solutions for real k, as well as an infi-

nity of solutions with complex k. All these k have negative real part and
describe irrelevant perturbations. For x1− n=e−1/e the two real solutions
merge, and for x1− n < e−1/e all solutions have complex k. The presence of
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complex eigenvalues indicates that s(t) has an oscillatory behavior and that
there is a discrete scale invariance in the corrections to scaling. The scale of
this discrete scale invariance is in general not equal to x, so that it is not
simply an artifact of the particularly simple form of branch interaction
chosen, but rather a result of the fact that branches separated by a finite
range of scales interact. As x1− n is decreased, one finds a k with vanishing
real part when k=ip/(2 log x), so x1− n=e−p/2. For x1− n < e−p/2, there are
complex eigenvalues with positive real part which describe relevant pertur-
bations so that the fixed point with g̃=A becomes unstable. In this case,
we have found by numerically solving Eq. (3) that f(t) is driven to a new
fixed point with non-decaying log-periodic oscillations, with a scale of
oscillations y which is not in general equal to x. This describes a sponta-
neous breaking of continuous scale invariance to discrete scale invariance,
tQ yt. Physically, this means that branches tend to be removed at certain
characteristic scales, t0, yt0, y2t0,... . The model considered here is useful for
analyzing these effects, which are beyond perturbation theory in 1− n.
Finally consider correlations: the probability, given that there is a

branch point at time t1 remaining in the tree until time t
−

1, that there is
another branch point at time t2 remaining in the tree until time t

−

2. To study
these, generalize the survival probability to a function s(t, tŒ), the probabil-
ity that a branch point created at time t survives until time t+tŒ. We obtain
the equation

“tŒs(t, tŒ)=−
nh(tŒ−1) s(t, tŒ)

tŒ
−(1−x) gs(t, tŒ) s((1−x) t+xtŒ, xtŒ) (6)

Defining gs(t, tŒ)=A
t (1+f(t, tŒ)) and linearizing we find

“tŒf(t, tŒ)=−
(1− n)
tŒ
f(t+(1−x) tŒ, xtŒ) (7)

This equation is translationally invariant in t and so we look for solutions
f(t, tŒ)=e ilth(tŒ). We find “tŒh(tŒ)=−

(1− n)
tŒ h(xtŒ) e

ilxtŒ. For l=0, this is the
same as Eq. (5). Generally, for tŒ° l−1, we find the same discrete scale
invariant solution as for Eq. (5) as above. For tŒ± l−1, the perturbations
f(t, tŒ) decay more rapidly due to the oscillations of the exponential. Thus,
the two time scales t, tŒ are related, and we find discrete scale invariance in
both.

Simulations. It is possible to simulate the above model, and see the
topology produced. A small time step dt is chosen, and the dynamics
described above is simulated. We chose to plot the trees as follows. At each
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time step, we plot only the leaves of the tree, with the vertical position of
the leaves corresponding to the elapsed time since the simulation was
started. The horizontal position of the leaves is arbitrary: the model as
defined above makes no reference to spatial geometry, only to topology.
Thus, we introduce a rule for the horizontal position of the leaves, with the
rule chosen to let the pictures accurately represent the tree. The tree is
started with a single leaf at horizontal position 0. If a tip-splitting event
occurs on a leaf, the daughters get positions infinitesimally displaced from
the parent’s position, randomly choosing which daughter is placed to the
left and which to the right. Further, at every time step, each leaf is moved
by a distance d. We take d to be proportional to the number of leafs to the
left of the given leaf, minus the number of leaves to the right of the given
leaf. Effectively, this introduces a repulsive force between leaves, forcing
the leaves away from each other, and thus making it possible to view the
tree without any problem of branches overlapping each other.
In Fig. 3 we show a simulation with n=0.4, x=0.7, while in Fig. 4 we

show n=0.7, x=0.7. Other parameter choices can lead to a range of dif-
ferent branch densities. Figs. 3 and 4, which show the evolution of the leafs
of the tree as a function of time, should be contrasted with Figs. 1 and 2

Fig. 3. Simulation with n=0.4, x=0.7.
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Fig. 4. Simulation with n=0.7, x=0.7.

which show the topology of the tree at an instant. However, as the topol-
ogy of the tree at any given instant is the result of all the splitting events at
preceding times, from graphs such as Figs. 3 and 4 one can determine the
full topology of the tree as a function of time.

Different Geometries. We now consider the local ‘‘fractal dimen-
sion’’ of the cluster. Consider a subtree of the full tree consisting of a given
branch below some branch point at time ti, as well as all its subbranches
due to branching events at later times. The length of a subtree is defined to
be t− ti. This corresponds to the vertical distance as plotted using the
above procedure. The total elapsed time t sets a length scale for the cluster.
The mass of a subtree is defined to be the integral, over all time, of
the number of leaves in that subtree at the given time. In the case of
simulations above, the integral gets replaced by a discrete sum.

Scale-Invariant Branch Distribution 1039



Define m(t) to be the average mass of a subtree at a time t after its
creation, given that the subtree has not yet been removed from the tree
(and assuming the subtree lie on a weaker branch). If instead the branch is
removed at time t, from Eq. (3), the probability that the removal is due to
processes described by Eq. (1) is n, while the probability that the removal is
due to branch interaction is 1− n. As a result, the average mass of a subtree
which is removed at time t is m(t)+(1− n) m(xt), where the second term
represents the additional mass of the side branch in the case that removal
is due to a side branch. In general, the mass m(t) is equal to t, plus
the mass of side branches. Side branches which appear at a time tŒ with
0 < tŒ < (1−x) t can only live for a limited time, tœ < xtŒ/(1−x), or else
branch competition would lead to death of the subtree. Side branches that
appear at time tŒ > (1−x) t can live for any time. This gives the recursion
relation

m(t)=t+g F
(1−x) t

0
dtŒ F

xtŒ/(1−x)

0
dtœ[m(tœ)+(1− n) m(xtœ)](−“'t (s(tœ))

+g F
t

(1−x) t
dtŒ F

t− tŒ

0
dtœ[m(tœ)+(1− n) m(xtœ)](−“'t (s(tœ))

+g F
t

(1−x) t
dtŒ m(tŒ) s(tŒ) (8)

The first two integrals are over the mass of side branches which live for
time tœ, after being created at time tŒ. The last integral is over the mass of
sidebranches which remain alive at time t.
Assuming a power law m(t)=tD, Eq. (8) gives D(D−1)=A[xD−1(1+

(1− n) xD)+xD(D−1)]. For n % 1, this reduces to

D=1+(1− n)
x
1−x

+O(1− n)2 (9)

Consider two different geometries. If we start the tree with a single
branch and follow the dynamics above, this is analogous to starting the
dielectric breakdown model with a single branch as a seed configuration
and letting the cluster grow. In this case, Eq. (9) provides a scaling of the
mass with the time. In another geometry, analogous to the cylindrical
geometry, we modify the dynamics to always remove a weaker branch if
t− ti > T, for some T setting a scale. In this case, after an initial non-
stationary regime lasting for a time of order T, the mass of the cluster increa-
ses linearly with t, with a rate proportional to TD−1: the mass of the largest
branches, times the probability of producing such a branch. Thus, within
this model the mass-radius scaling and local fractal dimension are the same
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up to a trivial difference of unity. We can generalize the model by including
a possibility of removing a branch due to the presence of a parent branch
of comparable size. Then, the probability of the earliest branch point i
surviving till time t will scale as (t− ti)−a t

−b
i where a+b=1. One will again

find that the average time required to produce a branch point surviving for
time t is of order t and the mass-radius scaling and local fractal dimension
will again be equivalent.
We have checked this result for the dimension using the simulations.

There are significant fluctuations about the average in individual runs, but
after averaging over many runs, the dimension is recovered accurately.

Comparison to Branched Growth Model It has been shown (9)

that there exists a 1− n expansion for the branched growth model similar to
the 4−g expansion for the dielectric breakdown model. One elegant feature
of this expansion is that the lowest order fractal dimension is obtained
without considering interaction of branches, but simply from the bare con-
stant n. This seems surprising, as we have found within the model above,
and within the 4−g expansion for the dielectric breakdown model, that
unless we include branch interaction, the tip-splitting rate grows at large
scales for n < 1, and a scale invariant fixed point is not reached.
The resolution of this is that the branched growth model is defined

in a way which inherently includes effects of branch competition. In the
branched growth model, a branch is assumed to have a probability 1/mn of
surviving until it reaches a mass m, while within the model above the
probability is defined in terms of the probability to survive for a time t.
Now, given that a scale invariant fixed point can only be reached if a
branch has probability 1/t of surviving for time t, then we must have the
relation that 1/mn=1/t, so that m=t1/n, and the fractal dimension is 1/n.
More formally, m(t)=t+At log t to order (1− n)0, A1. We do not

have an exact Eq. (8) for the branched growth model, but this equation is
still correct to lowest order. One may still define a survival probability s(t)
for a branch within the branched growth model, and “ts(t)=−n“tm(t)
s(t)/m(t) so s(t)=1/t+(1− n) log t/t−A log t/t to order (1− n)1, A1, and
we find A=1− n=D−1.
This particular form of branch competition in the branched growth

model differs from that found in the dielectric breakdown model, as found
by numerically following the evolution of three branches. In some circum-
stances production of a daughter branch can actually reduce the competi-
tion of the parent branch with its sister; (6) it is only when summing over all
configurations that the increase in branch competition is obtained. Further,
the competition of branches which is inherent in the branched growth
model involves only an increased competition of a branch pair due to
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daughter branches. However, within the 4−g expansion, it was necessary
to consider the interaction of branches with daughter and parent branches
(which is in fact the strongest interaction numerically) to obtain the correct
result. Thus, both the present toy model and the branched growth model
are approximations to the physics near g=4, although the branched growth
model dynamics serves also as a good approximation for g=1. (7)

Conclusion. Wehave examined a simple, solvablemodel for branching,
finding a fixed point with a scale invariant tip splitting rate. The direct RG
for the model is exact at lowest order. The dielectric breakdown model has
similar behavior and a similar perturbative RG. The exact solution enables
us nonperturbatively to find additional irrelevant operators leading to a
discrete scale invariance. We contrast the behavior of this model, and the
dielectric breakdown model, with that of the branched growth model, for
which a similar 1− n expansion is available.
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